Genetic engineering of glycine betaine biosynthesis to enhance abiotic stress tolerance in plants

نویسندگان

  • Mohammad Sayyar Khan
  • Xiang Yu
  • Akira Kikuchi
  • Masashi Asahina
  • Kazuo N. Watanabe
چکیده

Glycine betaine (GB) is an important compatible solute that protects plants against the damaging effects of abiotic stresses. A number of plants have been engineered to contain genes of the GB biosynthetic pathway, which confers enhanced tolerance to a range of abiotic stresses during various plant developmental stages. Unlike natural accumulators, the transgenic plants accumulate very low GB concentrations, insignificant in terms of coping with osmotic stress. The GB accumulation in these transgenic plants varies depending upon their capacity for endogenous choline uptake, the type of gene that catalyzes the GB biosynthetic pathway, and the localization of the transgene product in a particular cellular compartment. This review focuses on recent progress in studies of abiotic stress tolerance conferred by GB in transgenic plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissecting the Role of Glycine Betaine in Plants under Abiotic Stress

Among the compatible solutes, glycine betaine (GB) is particularly an effective osmolyte against abiotic stress. Metabolic acclimation of GB is regarded as a basic strategy for the protection and survival of plants in harsh environmental conditions. Plant species vary in their capacity to synthesize GB. Some plants, such as spinach and barley, accumulate relatively higher levels of GB in their ...

متن کامل

Compatible Solute Engineering in Plants for Abiotic Stress Tolerance - Role of Glycine Betaine

Abiotic stresses collectively are responsible for crop losses worldwide. Among these, drought and salinity are the most destructive. Different strategies have been proposed for management of these stresses. Being a complex trait, conventional breeding approaches have resulted in less success. Biotechnology has emerged as an additional and novel tool for deciphering the mechanism behind these st...

متن کامل

Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance.

In common with other zwitterionic quarternary ammonium compounds (QACs), glycine betaine acts as an osmoprotectant in plants, bacteria, and animals, with its accumulation in the cytoplasm reducing adverse effects of salinity and drought. For this reason, the glycine betaine biosynthesis pathway has become a target for genetic engineering of stress tolerance in crop plants. Besides glycine betai...

متن کامل

Improved Tolerance to Various Abiotic Stresses in Transgenic Sweet Potato (Ipomoea batatas) Expressing Spinach Betaine Aldehyde Dehydrogenase

Abiotic stresses are critical delimiters for the increased productivity and cultivation expansion of sweet potato (Ipomoea batatas), a root crop with worldwide importance. The increased production of glycine betaine (GB) improves plant tolerance to various abiotic stresses without strong phenotypic changes, providing a feasible approach to improve stable yield production under unfavorable condi...

متن کامل

Glycine betaine biosynthesis genes differentially expressed in sugarcane under water stressGlycine betaine biosynthesis genes differentially expressed in sugarcane under water stress

Background Plants have developed a wide range of strategies which allow their survival under abiotic stresses [1]. One of those mechanisms is the accumulation of compatible solutes, which protect cell structure against damage induced by dehydration and oxidation [2]. The accumulated compatible solutes may include betaines and related compounds such as sugars and amino acids. Understanding the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008